lunedì 23 marzo 2020

LA TRIGONOMETRIA NELLA GRECIA CLASSICA


LA TRIGONOMETRIA NELLA GRECIA CLASSICA (510 a. C.-323 a.C.)

La trigonometria (dal greco trígonon e métron: risoluzione del triangolo) è la parte della matematica che studia i triangoli a partire dai loro angoli. Il compito principale della trigonometria, sta nel calcolare le misure che caratterizzano gli elementi di un triangolo partendo da altre misure già note per mezzo di funzioni trigonometriche. L'invenzione della trigonometria si può associare con un certa sicurezza agli studi astronomici della scuola geometrica di Alessandria. La sua posizione centrale nel mondo mediterraneo dell'antichità, fece di Alessandria il centro della matematica greca fin quasi alla conquista araba, e il ponte attraverso il quale la geometria classica è pervenuta, mediante la tradizione araba, fino all'età moderna. Uno dei tratti della matematica alessandrina, accanto agli studi di matematica pura che proseguirono vigorosi per vari secoli, fu un'attenzione costante per le applicazioni scientifiche e tecniche, e di conseguenza per una matematica quantitativa, attraverso la quale i risultati teorici della geometria classica potevano trovare il loro corrispettivo nelle scienze della natura. L'astronomia quantitativa ha bisogno di una geometria altrettanto quantitativa, in particolare di una geometria della sfera, dato che sulla sfera celeste si svolgono i moti di cui si vuole costruire una teoria. L'uso delle funzioni trigonometriche nacque però principalmente in astronomia: del resto, gli antichi popoli della Mesopotamia, i Babilonesi, si dedicavano parecchio alle osservazioni astronomiche. Poi presso i Greci astronomia divenne una scienza molto legata alla matematica e in particolar modo alla trigonometria, al punto di essere considerata parte integrante di essa. Per questo motivo alla scienza greca spetta non solo il grande merito di aver fatto della matematica quella disciplina deduttivo-dimostrativa che oggi conosciamo, ma anche quello di aver impresso all’astronomia una svolta altrettanto epocale. Nel periodo della Grecia classica (510 a. C – 323 a. C), quando ancora la trigonometria non era stata teorizzata, due matematici e astronomi diedero l’avvio a questa nuova materia riprendendo gli studi degli antichi.                                                                                                                                          Ippocrate di Chio   (fig.1)            

Risultato immagini per ippocrate di chio  (fig. 1)     fu il primo geometra greco attivo ad Atene tra il 450 a. C – 420 a. C ca. Allievo di  Enopide a Chio, si diede in un primo tempo, al commercio; poi, si fermò ad Atene e si dedicò alla geometria. Ippocrate fu il fondatore della scuola geometrica ateniese ed è da considerare come il primo grande geometra greco. Si occupò di due problemi che hanno un posto di rilievo nella geometria greca: la quadratura del cerchio e la duplicazione del cubo. A lui si devono le prime quadrature di superfici piane limitate da curve (lunule, fig. 2) e, sembra, la riduzione del problema della duplicazione del cubo a quello della inserzione di due medie proporzionali tra due numeri dati. Ancora al geometra è dovuto il primo tentativo di esposizione sistematica della geometria: è un libro di Elementi, perduto. Quest'opera di Ippocrate costituiva il primo precedente degli Elementi di Euclide: pare infatti che conoscesse il metodo di riduzione di un teorema famoso problema della duplicazione del cubo, detto problema di Delo: e indicò la via della soluzione col riportarlo alla ricerca di due medie proporzionali fra due lunghezze date. Inoltre si vuole che Ippocrate abbia usato per primo le lettere nei disegni geometrici.

http://utenti.quipo.it/base5/pitagora/lunula1.gif(fig.2)

ABC è un triangolo rettangolo isoscele e H è il punto medio dell'ipotenusa BC.
L'arco BMC è un quarto della circonferenza di centro A e raggio AB.
L'arco BNC è metà della circonferenza di centro H e raggio HB.
La figura delimitata dai due archi si chiama lunula o menisco.
Il pitagorico Ippocrate di Chio dimostrò che l'area della lunula BMCN è uguale a quella del triangolo rettangolo ABC.

Chi sa fare altrettanto?

la lunghezza del cateto= AB.
Per il teorema di Pitagora, si ha che CB = aÖ2, BH = (aÖ2)/2.                           L'area del triangolo ABC è: a2/2                                                          L'area della lunula è la differenza fra le aree del semicerchio BNC e del settore circolare BMC.
Area semicerchio BNC = p·BH2/2 = pa2/4
Area settore BMC = p·AB2/4- a2/2 = pa2/4 - a2/2

Area lunula = pa2/4 - pa2/4 + a2/2 = a2/2

Come si vede, i due termini pa2/4 si eliminano a vicenda e rimane a2/2, che è proprio l'area del triangolo rettangolo.

Eudòsso di Cnido, (408 a.C. – 355 a.C.)  (fig.3)

Risultato immagini per eudosso di cnido  è stato un matematico e astronomo greco antico, cui sono attribuiti risultati di grande importanza, fondamentali per il costituirsi della matematica come scienza. Eudosso fu studioso e studente di Platone, e di Filistione di Locri. Allievo di Archita di Taranto, da lui si presume sia stato avviato allo studio del problema della duplicazione del cubo, dei numeri interi e della teoria della musica. A Cnido costruì un osservatorio astronomico e da lui vennero identificate varie costellazioni. Gli antichi matematici greci non calcolavano con incognite ed equazioni come noi oggi, usavano invece proporzioni per esprimere le relazioni tra le quantità. Per questo il rapporto tra due quantità simili, non era solo un valore numerale, come pensiamo oggi; il rapporto di due quantità simili era una relazione primitiva tra esse. Eudosso fu capace di ricreare fiducia nell'uso delle proporzioni, fornendo un'incredibile definizione del significato di uguaglianza tra due rapporti.Questa definizione di proporzione è l'oggetto del V libro di Euclide.  Nella definizione 5 del V libro di Euclide si legge: «Si dice che una prima grandezza è con una seconda nello stesso rapporto in cui una terza è con una quarta, quando, se si considerano equimultipli qualsiasi della prima e della terza e altri equimultipli qualsiasi della seconda e della quarta, i primi equimultipli sono ambedue maggiori o minori o uguali, degli altri equimultipli presi nell'ordine corrispondente.». Se si prendono 4 quantità a, b, c, d, e la prima e la seconda hanno un rapporto a/b, e similmente la terza e la quarta hanno un rapporto c/d.

Ora, per dire che a/b = c/d si può proseguire in questo modo: Prendendo 2 qualsiasi numeri interi, m e n, essi formano gli equimultipli m*a e m*c del primo e del terzo, così come formano i due equimultipli n*b e n*d del secondo e del quarto. Ora, se m*a > n*b si deve anche ottenere che m*c > n*d (e così via con = e <) . Si nota che la definizione dipende dal paragone tra le quantità simili m*a e n*b e le quantità simili m*c e n*d e non dipende dall'esistenza di una comune unità di misura di queste quantità. La complessità della definizione riflette la profonda innovazione concettuale e metodologica coinvolta.

 Nell'Antica Grecia gli astronomi cercavano di creare modelli geometrici che potessero imitare il movimento celeste. Identificare il lavoro astronomico di Eudosso come una categoria separata dalla matematica è perciò una convenienza moderna. Su questo argomento Eudosso scrisse dei libri ma, ad oggi, ne rimangono solo alcuni titoli

1.      Eclissi di Sole

2.      Ottateride (su un ciclo lunare/solare di otto anni)

3.      Phaenomena e Entropon (sull'astronomia sferica)

4.      In Movimento (sui movimenti planetari).

Nella prima metà del IV secolo a.C. Eudosso di Cnido elabora il primo modello geometrico dei moti celesti, il cosiddetto sistema delle sfere omocentriche (fig.4) . Ingegnoso ed elegante, ma incapace di rendere conto di alcune importanti evidenze empiriche, esso sarà soppiantato dalla teoria epiciclica, ideata Apollonio di Perga nel secolo successivo. La nuova teoria condurrà alla nascita di quella branca della matematica, oggi nota come trigonometria, che consentirà di esprimerne tutte le potenzialità.                    

Risultato immagini per eudosso di cnido

 

Bibliografia e sitografia:

-          Wikipedia

-          Enciclopedia Treccani

-          Britannica. com
ELENA BARTOLINI

Nessun commento:

Posta un commento

Nota. Solo i membri di questo blog possono postare un commento.